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ABSTRACT
Clustering is an effective method to increase the available paral-
lelism in VLIW datapaths without incurring severe penalties asso-
ciated with large number of register file ports. Efficient utilization
of a clustered datapath requires careful binding of operations to
clusters. The paper proposes a binding algorithm that effectively
explores tradeoffs between in-cluster operation serialization and
delays associated with data transfers between clusters. Extensive
experimental evidence is provided showing that the algorithm gen-
erates high quality solutions for basic blocks, with up to 29% im-
provement over a state-of-the-art advanced binding algorithm.

1. INTRODUCTION
A significant segment of embedded multimedia applications ex-

hibits high instruction-level parallelism (ILP) in the most time-
consuming inner loop basic blocks. Very Large Instruction Word
(VLIW) processors provide a means to efficiently exploit such ILP.
A “simple” VLIW datapath may consist of a centralized register
file (RF) with several functional units (FUs) connected to it through
dedicated ports. With a sufficient number of FUs, a compiler may
be able to utilize all the available static ILP present in a given ba-
sic block. However, as the number of functional units (and thus
register file ports) increases, such “centralized” architectures may
become prohibitively costly in terms of clock rate, power, area, and
overall design complexity. [13]

It is desirable to control the penalties associated with a large
number of RF ports, while providing a sufficient number of func-
tional units to exploit the available ILP, even in the most demanding
applications. In order to achieve this, one can restrict the connec-
tivity between FUs and registers. One of the most efficient ways to
do so relies on structuring a VLIW datapath into clusters [2, 4] of
functional units connected to a local register file. However, in such
clustered architectures data may need to be moved from one cluster
to another via additional data transfer operations, which may lead
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to increased schedule latency and energy consumption. Note also,
that such explicit data transfers change the structure of the original
dataflow graph (DFG). Figure 1 demonstrates such change when a
data transfer t1 has to be inserted in the DFG due to the binding of
operations v2 and v3.
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Figure 1: Changes in dataflow graph.

This paper presents an efficient algorithm for binding operations
in a dataflow graph (representing a basic block) to the datapath
clusters. The algorithm is designed to generate binding solutions
that minimize latency (primary figure of merit) and data transfers
(secondary figure of merit).

Our algorithm comprises two main phases: (1) generation of an
initial binding solution (B-INIT), and (2) iterative improvement of
the initial solution (B-ITER). We note that the fast initial binding
algorithm (used in phase 1) already delivers quite good quality re-
sults (see Section 5), and may thus be used (alone) when compila-
tion time is very critical. The second, iterative improvement, phase
is designed to deliver maximum quality results when code perfor-
mance is the major goal. In Section 5 we report improvements of
up to 25% (for B-INIT) and up to 29% for (B-ITER) over PCC [3],
a state of the art binding algorithm.

The rest of this paper is organized as follows. In Section 2 we
introduce the datapath and dataflow models used in our approach.
Section 3 details the proposed binding algorithm. We discuss pre-
vious work in Section 4, present experimental results in Section 5,
and conclude in Section 6.

2. DATAPATH AND DATAFLOW MODELS
Datapath model. We model a datapath as a collection of clusters
CL connected through a BUS. Each cluster c 2CL contains its own
local register file and a collection of functional units. Every FU
reads up to two operands from and writes one result to the regis-
ter file through dedicated RF ports. The number of simultaneous
inter-cluster data transfers that the bus can perform is denoted by
N(BUS) or NB for short. Other equivalent interconnect structures,
e.g., a crossbar, would be modeled identically.

Each FU f belongs to a corresponding functional unit type (e.g.
ALU, multiplier, etc.). The number of functional units of type t in
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cluster c is denoted by N(c;t). The total number of FUs of type t is
expressed as N(t) =∑c2CL N(c;t).

Every operation v in the dataflow graph (DFG) has an operation
type — optype(v). Each operation type p is associated with exactly
one functional unit type f utype(p) (e.g. “subtraction” is performed
on ALUs) and thus the set of functional unit types FT partitions the
set of operation types OT . For generality, we consider the bus to
be a resource of type BUS and associate the data transfer (move)
operation type with it: f utype(move) = BUS.

Each operation type p (including moves) has a corresponding
latency, lat(p), defined as the number of clock cycles needed to
produce the result at the specified location. Functional units and
the bus can be pipelined. For a pipelined resource of type t, we de-
fine a data introduction interval as the number of clock cycles after
which the resource is ready to start a new operation, and denote it
by dii(t).1

Binding in an early stage helps control the increased complex-
ity of code generation for clustered VLIW machines. Almost in-
evitably, the binding algorithm has to work at a certain level of
abstraction because precise information about later decisions (e.g.
register allocation) is not yet known. Accordingly, we assume un-
bounded size register files. In other words, we assume that costly
spills to memory should be rare and will later be carefully selected
(when needed) so as to not significantly affect performance. This
assumption is reasonable, since clustered machines distribute op-
erations, which generally decreases register demand on each local
register file.

Dataflow model. The dataflow graph (DFG) used to represent a
basic block is a direct acyclic graph DAG = (V;E). The set of
vertices V represents operations and the set of edges E � V �V
models data dependencies on the original basic block. We denote
the total number of operations jV j by NV . A DFG can assume two
forms: the original and the bound, as shown in Figure 1 (a) and
(b) correspondingly. The latter includes the necessary data transfer
operations (see, e.g., t1 between v2 and v3 in Figure 1.b) to de-
liver data objects from the clusters where they are produced to the
clusters to which the consuming operations are bound.

An operation v can be bound to a cluster c if it has a functional
unit supporting that operation. The binding function is denoted by
bn(v). In other words, bn(v) = c implies that N(c; f utype(p)) > 0
for p = optype(v). The set of clusters supporting an operation v of
type p is called the target set for that operation: TS(v). The binding
problem can be formulated as selecting a cluster c in the target set
c 2 TS(v) for each DFG operation v 2V .

The schedule latency L denotes the number of clock cycles re-
quired to complete the execution of all operations (including the
data transfers if any) in the bound DFG.

3. THE BINDING ALGORITHM
Our binding algorithm consists of two phases. The first phase

performs a coarse DFG partitioning aiming at increasing the par-
allelism in the final schedule and decreasing the number of data
transfer operations. Despite its low complexity, the algorithm used
in this phase delivers remarkably good results. Still, if a better so-
lution is needed, the second phase of our algorithm delivers near-
optimal results, at the expense of increased time complexity.

Our “driver” algorithm thus starts by invoking the initial binding
phase, varying a set of parameters described in Sections 3.1.3 and

1For convenience, we use the same notation lat() and dii() for
operations and their types: lat(v) = lat(optype(v)) and dii(v) =
dii(optype(v)) = dii( f utype(v)).

3.1.4. The best binding solution is then passed to the iterative
improvement phase (Section 3.2).

3.1 Initial binding phase
The initial binding phase uses a greedy algorithm. As with any

greedy heuristic, there are two most important elements that need
to be carefully considered in order to optimize the algorithm’s per-
formance: (1) the ordering for binding the nodes, and (2) the cost
function that drives the actual binding. A good ordering should
insure that the most critical binding decisions are made first, and
more “flexible” nodes are left for later steps. The cost function
should adequately predict the “global” effect of such “incremental”
binding decisions, and at the same time be inexpensive in terms of
time complexity.

3.1.1 Ordering
One of the simplest ways to order/rank operations is to use op-

eration mobility2 as the ordering function. The rationale behind
such ordering is that operations with smaller mobility have fewer
alternatives for scheduling, and thus should be considered first. Un-
fortunately, with this ordering the algorithm would tend to traverse
the DFG “vertically” (along the critical path(s)), which makes it
difficult to formulate a cost function that also takes resource load
into consideration.

v2

v5

v4

v1

v3

v6

Figure 2: Illustration of binding order.

We found that the best performance can be obtained when using
a three-component ranking function, and ordering operations lex-
icographically according to these components. The primary com-
ponent of our ranking function is the operation’s alap() value, with
earlier operations considered first. The second component sorts the
nodes at the same alap() level by their mobility (lower mobility
receives higher priority). The third ranking function component is
the number of consumers of the operation’s result. For example,
for a DFG in Figure 2, the order of binding would be: v1, v2, v3,
v4, v5, v6. Note that this ordering still starts with operations on the
critical path(s), thus providing the most binding flexibility for the
most sensitive operations. Moreover, as shown in Section 3.1.2,
the level-oriented priority function component enables the estima-
tion of cluster load during the binding process, without requiring
the scheduling of operations. This is important because assigning
fixed start times to operations, during the binding process, would
have unnecessarily limited the flexibility of binding decisions.

3.1.2 Cost function
For each node v considered by the algorithm, it is necessary to

estimate the quality of possible bindings among TS(v). Binding
usually involves a tradeoff between the delay associated with oper-
ation serialization (when an excessive load is placed in a cluster)
and the delay due to insertion of data transfers (when the load is

2For a given target latency LTG, mobility µs of operation v is de-
fined as µs(v) = alap(v)� asap(v). The functions asap(v) and
alap(v) denote the “as soon as possible” and “as late as possible”
scheduling steps of v, respectively. Since the ranking function only
compares mobilities of operations, its behavior does not depend on
a specific value of LT G.
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scattered through various clusters). For a cost function to work
well, both of these delay “penalties” should be captured.

Accordingly, the cost icost(v;c) of binding operation v to cluster
c is expressed as:

icost(v;c) = f ucost(v;c) α dii(v)+

buscost(v;c) β dii(move)+

trcost(v;c) γ lat(move) ;

(1)

where trcost(v;c) is the data transfer penalty, f ucost(v;c) is the
FU serialization penalty, and buscost(v;c) is the bus serialization
penalty.

As shown in Equation 1, the penalties related to resource con-
straints f ucost(v;c) and buscost(v;c) are weighted by the data in-
troduction interval dii() of the corresponding resources.3 Similarly,
the penalty trcost(v;c) associated with data transfer operations in-
troduced in the DFG is weighted by bus latency lat(move).

We found that better results are obtained when the data transfer
penalty is given just a slightly larger priority over the serialization
penalties. This is achieved by the coefficients α, β, and γ (i.e. α =
β = 1:0 and γ = 1:1).

Data transfer penalty trcost(). Our ordering of operations (Sec-
tion 3.1.1) guarantees that, when we are binding operation v, the
producers of v’s operands have already been bound. Thus, it is pos-
sible to calculate the number of data transfers to deliver operands
to v given a certain binding of v (see direct data dependency (v1;v)
in Figure 3). We denote this cost component by trcostdd(v;c) and
call it direct data dependency component. In order to calculate
this component, we consider all predecessors of v, pred(v), and for
each predecessor u2 pred(v) bound to a different cluster bn(u) 6= c,
we add 1 to the value of trcostdd(v;c). For example, in Figure 3,
pred(v) = v1 and, since A = bn(v1) 6= B, the direct data depen-
dency component of trcost() for binding v to B is trcostdd(v;B)= 1.

bound

unbound

trcost   (v,B)=1dd

trcost   (v,B)=1

bound

cc

considered

v1 Cluster
B

v3

v v2

Cluster
A

Figure 3: Data transfer penalties.

The second component of trcost() is called common consumer
component and denoted by trcostcc(v;c). Under certain conditions,
we “look ahead” and detect a required data transfer to an operation
that has not yet been bound. For example, operations v and v2 in
Figure 3 have a common consumer v3. If the first two are bound to
different clusters, there will be at least one data transfer regardless
of v3 binding. The common consumer cost trcostcc(v;c) is calcu-
lated by considering all successors of v: we add 1 to the cost for
each u 2 succ(v) that has a bound predecessor z = pred(u), such
that bn(z) 6= c. In Figure 3, trcostcc(v;B) = 1 because v3 2 succ(v)
and v2 is bound to cluster A: bn(v2) 6= B while v2 = pred(v3).

The overall data transfer penalty is expressed as:

trcost(v;c) = trcostdd(v;c)+ trcostcc(v;c) :

In Figure 3, this penalty is trcost(v;B) = 2 .

FU serialization penalty f ucost(). To account for possible nega-
tive effects of serialization (delay in scheduling) of operations due

3Note that, if the resource for operation v is not pipelined, dii(v) =
lat(v).

to insufficient resources in a cluster, we consider a FU serializa-
tion penalty f ucost(v;c). We apply a relaxation technique similar
to the one used in force-directed scheduling [12] to estimate the re-
source load of a centralized datapath. When we consider the bind-
ing of a current operation v 2 V to a target cluster c 2 TS(v), we
first calculate the corresponding resource load in c. Then, the FU
serialization penalty f ucost(v;c) of binding v to c is computed by
comparing the normalized load of c with the normalized load of the
equivalent centralized datapath. Below is a more detailed descrip-
tion of this process.

Operations and their
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Figure 4: Load profile.

The resource load is expressed as a load profile over the “schedul-
ing” steps, as illustrated in Figure 4. The load profile latency pa-
rameter LPR is provided to the initial binding algorithm and may be
varied as described in Section 3.1.3.

Each operation v contributes to the load of the corresponding FU
type t according to its “time frame”. The load of operation v at
profile level τ is defined as:

load(v;τ) =

8<
:

0 if τ < asap(v)
0 if τ > alap(v)+dii(v)�1

1
µ(v)+1 otherwise ,

where µ(v) = alap(v)� asap(v) is the profile mobility of v (i.e.,
the alap() values are defined for a given load profile latency, LPR).
The level ordering is always calculated for the original DFG (i.e.
without data transfers) and thus does not depend on binding. Note
that when the data introduction interval dii(v) > 1 (i.e. not fully
pipelined FUs are used), the load is extended beyond the opera-
tion’s time frame. Thus, when comparing the load profiles, we may
need to look beyond the “current” level τ.

For every load profile level τ and every FU type t, we define
the normalized load profile of the equivalent centralized datapath
loadDP(t;τ) as the sum of operation loads load(v;τ) at level τ for
each operation v 2 V supported by FUs of type t. The load profile
is normalized by N(t), the number of FUs of type t in the datapath:

loadDP(t;τ) = ∑
v2ops(t)

load(v;τ)
N(t)

;

where ops(t) is defined as:

ops(t) = fv j f utype(optype(v)) = tg

Similarly, we define the normalized load profile for FU type t in
cluster c as:

loadCL(c;t;τ) = ∑
x2ops(t); bn(v)=c

load(v;τ)
N(c;t)

Only bound operations (i.e., bn(v) = c) are considered in cluster
load profiles.

In order to calculate f ucost(v;c), we temporarily update the load
profile of the corresponding FU type t in cluster c and compare it
with that of the centralized datapath equivalent. FU serialization
penalty f ucost(v;c) is increased by 1 for each clock cycle τ for
which loadCL(c;t;τ)> max(loadDP(t;τ);1). Note that the penalty
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is not incurred if the corresponding cluster is not overloaded, i.e.,
loadCL(c;t;τ)� 1.

Bus serialization penalty bcost(). The efficiency and simplicity of
the initial binding algorithm is partially based on the fact that we al-
ways work with the original DFG (i.e. our relaxation preserves the
level ordering of operations). A sufficiently good approximation of
the bus load can be achieved by placing the data transfers “on the
side”, right after completion of the producing operation. The load
profile mobility of the data transfer is assigned the mobility of the
corresponding consumer decreased by the bus latency lat(move).
If the data transfer “does not fit”, i.e., the calculated mobility is
negative, we assume it to be 0. buscost(v;c) is calculated by adding
1 for each clock cycle τ in which loadBUS(τ)> 1. This approxima-
tion is consistent with our use of the same centralized load profile
(to calculate f ucost()) throughout the entire binding process, and
has worked well in practice.

3.1.3 Varying the LPR parameter
The initial binding algorithm uses the load profile latency LPR

parameter (see Figure 4) for the purpose of calculating the load
profiles of different resource types. We first set LPR equal to the
critical path length LCP of the original DFG. However, the actual
best schedule latency L� achievable for a given datapath and DFG
may be larger due to inevitable serializations and/or data transfers.
If LCP and L� differ considerably, the estimations of resource load
f ucost(c;t) and buscost(v;c) may be overly pessimistic which can
affect the quality of solutions produced by the algorithm. Indeed,
we found that an increased profile latency LPR > LCP frequently
leads to a better binding in these cases.

A simple way to explore this opportunity to improve the binding
quality is to run the initial binding algorithm with “stretched” load
profile latencies, and estimate the quality of the generated bindings
by scheduling the bound DF graphs and comparing the resulting
schedule latency values L. This simple approach is practical be-
cause of the low complexity of our initial binding, and is thus ex-
plored in the context of our “driver” binding algorithm.

3.1.4 Reversing the order of binding
We found that for some DFGs, especially the ones with smaller

number of inputs and larger number of outputs, starting the bind-
ing process from the output nodes may be beneficial. The initial
binding algorithm remains essentially the same, with just a few
symmetric changes. As with the previous case, this optimization
is explored by the “driver” algorithm.

3.2 Iterative improvement phase
Throughout an extensive experimental validation, the initial bind-

ing algorithm has performed very well, and in some cases we were
able to verify that the generated solutions were optimal (at our level
of abstraction). However, in a significant number of cases, further
improvement was still possible. To take advantage of these oppor-
tunities, we developed an iterative improvement algorithm that uses
specific binding optimizations aimed at correcting the greediness of
the initial binding, while controlling computational complexity.

Specifically, our analysis has shown that the quality of the initial
partitioning of nodes into clusters can be improved by focusing the
optimizations on operations at the “boundaries” of the partitions,
i.e. on operations that have either producers or consumers bound
to a different cluster. For example, Figure 5 shows reassignment of
operation v2 from cluster A to cluster B. By doing such boundary
perturbations, data transfer operations can be repositioned, elimi-
nated, collapsed, etc.

For example, the boundary perturbation shown in Figure 5, “shifts”

Cluster B

Cluster A

Cluster B

Cluster A

v1

v2

v3

v2

v3

t1

t1

v1

Figure 5: Cluster boundary perturbations.

up the data transfer operation t1, possibly reducing bus congestion
that may exist at the original temporal location of t1. As far as regu-
lar operations are concerned, the perturbations can facilitate reduc-
tion of serialization in two ways: (1) by achieving a more favorable
load distribution among clusters – “horizontal” redistribution; and
(2) by shifting the scheduling positions of operations up or down
– “vertical” redistribution. The latter is a result of changes in the
bound DFG (e.g., in Figure 5 the scheduling interval of v2 shifts
down after cluster reassignment).

At each iteration in our improvement algorithm, we perform such
boundary perturbations driven by a cost function. In its simpler ver-
sion, the algorithm terminates the iterations when the perturbations
fail to find a binding solution with a value of the cost function better
than that of the previous iteration.4

Thus, as illustrated in Figure 5, the boundary perturbations in
each iteration are performed on the bound DFG by considering all
operations that have either an operand or result delivered to/from a
different cluster. For each such operation, we temporarily re-bind
it to the cluster(s) where the operand/result resides. We perform
such re-binding for individual operations and for pairs of opera-
tions. Each new binding produced by such perturbations is evalu-
ated with a binding quality function.

Since the main goal is to minimize the schedule latency, the sim-
plest variant for a binding quality function would be the estimated
length L of the final schedule. Such a simple cost function however,
has not shown to be acceptable, since it is often impossible to re-
duce L in a single improvement iteration, (i.e., by a single boundary
perturbation). Indeed, for an iterative optimization process to work
well, it is important for the quality function to facilitate a grad-
ual (incremental) improvement, from iteration to iteration. Thus, a
more detailed estimation of the quality of the binding and its po-
tential for further improvement is required, as illustrated below.

Consider the schedule fragment shown in Figure 6.a, where two
operations v1 and v2 are executed at the last clock cycle τ = L. To
improve the overall schedule latency L, both of these operations
need to become schedulable at an earlier cycle, yet this may be
impossible to achieve in a single perturbation iteration. Suppose,
however, that one improvement iteration can find a binding that
makes it possible to schedule operations v3 and v2 one clock cycle
earlier without affecting v1 (see Figure 6.b). Since such modifica-
tion does not change L, a naı̈ve quality function, that only consid-
ered the schedule latency, would not distinguish between bindings
(a) and (b) in Figure 6. Our experiments showed, however, that a
binding like (b) very often has advantages over (a), since a single
local perturbation iteration generally has more chances to improve
the schedule latency L when fewer operations complete at the last
clock cycle. This was especially noticeable in DFGs with a large
number of outputs, such as the DCT algorithms or unrolled versions
of single-output DFGs.

We developed a simple and yet very efficient quality function
that is capable of estimating not only the quality of a binding, but
also the potential for its improvement. It is expressed as a vec-

4We will discuss a more powerful variant of the algorithm later in
this section.
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L-1

L-2

...

(a)

...

(b)

v1

v7

t1v4

v5

v3

v6

v2

v4

v6 v7v5 v3

t1 v2

v1

U  = 2U  = 2 1

2U  = 4

0U  = 1

1

U  = 32

0U  = 2

Figure 6: Illustration of quality function QU .

tor QU = (L;U0;U1; :::), where Ui is the number of regular opera-
tions completed at step L� i (see Figure 6). Two bindings are com-
pared lexicographically using the elements of their corresponding
QU vectors.5 Note that, since we use a list scheduling algorithm
for quality estimation, the nodes can only be delayed by either re-
source constraints or inserted data transfers, and thus the amount of
such delay directly corresponds to the quality measure.

An alternative cost function based on vector QM = (L;NMV ) (i.e.
latency and number of moves) does not work as well as QU , lead-
ing to larger final schedule latency. This is so because it is more
likely to fall into a local minima, as illustrated in Figure 6. We
found, however, that the “number of moves” component NMV can
successfully reduce the number of data transfers in the final solu-
tion. To benefit from both cost functions, we first use QU to achieve
the minimum latency and then use QM to minimize NMV .

4. PREVIOUS WORK
Leupers [9] presented an “instruction partitioning” algorithm that

takes an initial random binding and improves it by simulated an-
nealing. A detailed scheduling is performed for each generated
binding and the corresponding latency is used as cost function. The
detailed scheduling algorithm was developed for the ’C6201 VLIW
processor from Texas Instruments and the approach was evaluated
on this two-cluster architecture. Similarly to our experiments, the
author used time-critical basic blocks from typical DSP algorithms
without considering register file capacity. The experiments show
from 7 to 26 percent improvement in schedule latency as com-
pared to the TI assembly optimizer, at the expense of an increase in
compilation time. The execution time of the algorithm is likely to
grow significantly, if one considers datapaths with a large number
of clusters.

Capitanio et al. [1] performed binding using an extension of
classical network partitioning algorithms with simulated annealing
enhancements. The primary cost function is the size of the cut-set.
The underlying idea is that limiting the communication (number
of moves) between clusters minimizes the increase in the schedule
length due to clustering. Unfortunately, the load balancing among
clusters induced by the algorithm does not guaranty latency min-
imization. In fact, in our experiments we found that sometimes
the optimal solution executes only a small subset of the operations
in some of the clusters. Moreover, due to the specifics of the al-
gorithm, the target architecture must have homogeneous clusters,
i.e. all clusters must have exactly the same number and type of
FUs. Similarly to us, the algorithm was tested on a number of basic
block kernels.

Özer et al. [11] presented a greedy binding / scheduling algo-
rithm similar to our initial binding. In contrast with our cost func-
tion (Section 3.1.2), theirs requires the computation of ready times
for operations being bound. At the end, the schedule generated dur-
ing the binding process is considered to be the final schedule. The

5In practice, the elements of vectors may be calculated “on the fly”
only until a mismatch is found.

authors use inner loop basic blocks (selected from benchmark pro-
grams) to evaluate the algorithm.

Jacome et al. [7] addressed design space exploration of clustered
VLIW datapaths. Although our algorithm in [7] does produce oper-
ation binding solutions, it is fundamentally different from the work
presented in this paper in terms of both problem definition and ob-
jectives.

Several research groups [10, 14, 5] address binding in the con-
text of modulo scheduling algorithms. The objective of modulo
scheduling is to software pipeline the basic block inner loop body
(i.e., derive a retiming function for its operations), as well as deter-
mine adequate binding and scheduling functions, so as to minimize
the loop’s initiation interval (i.e., maximize throughput). The ap-
proach adopted in these papers is different from ours in that they are
performing performance-enhancing loop transformations. We ar-
gue that a final, high quality binding and scheduling solution should
always be generated for the selected retiming function (or unrolling
factor, etc.), since one can then take advantage of having complete
information on the transformed DFG.

Desoli [3] developed a two-phase binding algorithm called Par-
tial Component Clustering. The first phase partitions the DFG into
several partial components, using a depth-first traversal, similarly
to the Bottom-Up Greedy (BUG) algorithm.6 An initial assign-
ment algorithm then places the partial components into clusters,
trying to balance the load and minimize inter-cluster communica-
tion. The second phase implements an iterative improvement of
the initial binding, driven by a cost function similar to our QM (see
Section 3.2) with latency obtained by a fast approximate scheduler.
We found this algorithm to be one of the best representatives of the
state of the art and will thus compare its performance with ours.

5. EXPERIMENTAL RESULTS
The following benchmarks were selected for algorithm evalua-

tion: an Elliptic Wave Filter (EWF) benchmark, an Auto Regres-
sion Filter (ARF), an FFT which is the main kernel of the RASTA
benchmark from MediaBench [8], and several DCT algorithms [6],
along with DCT-DIT-2, an unrolled version of DCT-DIT algorithm.
The key features of these benchmarks, such as number of opera-
tions NV , number of connected components NCC, and the critical
path length LCP are shown in the sub-headers of Table 1.

For consistency, throughout our first set of examples in Table 1,
we assume the datapath to have 2 buses and all operations to take
one cycle. In a second set of examples (Table 2), we vary the la-
tency of data transfer operations and the number of buses for the
FFT benchmark, so as to illustrate the generality of the algorithm.

For each benchmark, several experiments were created using
a broad variety of homogeneous and non-homogeneous datapath
configurations. Clusters in both tables are symbolically represented
as ji; jj, where i is the the number of ALUs and j is the number of
multipliers in the corresponding cluster.

The tables present “schedule latency / number of data transfers”
(L/M) pairs for the PCC algorithm, for our initial binding phase
(B-INIT), and for our iterative improvement phase (B-ITER), along
with latency improvement percentages and the CPU times in msec
and sec. Our INIT algorithm almost always executes faster than
PCC (which includes an iterative improvement phase responsible
in some cases for as much as 1900% slowdown as compared to B-
INIT). Yet, in the majority of the examples, B-INIT performs no
worse than PCC, and even shows significant latency improvements
in some cases. B-ITER, our second binding phase demonstrates

6To be more precise, several such partitions are created by varying
maximum number of nodes per partial component.
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DATAPATH PCC B-INIT B-ITER
L/M msec L/M ∆L% msec L/M ∆L% sec

DCT–DIF: NV = 41, NCC = 2, LCP = 7
j1;1j1;1j 16/15 3.7 15/2 6.7 2.4 15/2 6.7 0.05
j2;1j2;1j 11/0 4.8 11/10 0 2.4 10/6 10 1.3
j2;1j1;1j 11/12 5.9 11/6 0 2.4 10/6 10 0.19
j1;1j1;1j1;1j 12/8 13 12/9 0 3.1 11/8 9 5.1

DCT–LEE: NV = 49, NCC = 2, LCP = 9
j1;1j1;1j 16/11 8.0 16/7 0 4.3 16/6 0 3.8
j2;1j2;1j 12/8 9.2 12/2 0 4.3 12/2 0 2.9
j2;1j1;1j 13/9 13 13/5 0 4.3 13/3 0 0.52
j2;2j2;1j 11/0 8.4 10/2 10 4.3 10/1 10 0.03
j1;1j1;1j1;1j 14/8 19 12/14 17 5.5 12/10 17 3.7

DCT–DIT: NV = 48, NCC = 1, LCP = 7
j1;1j1;1j 19/18 8.1 19/7 0 2.9 19/7 0 0.85
j2;1j2;1j 13/18 7.1 13/7 0 2.9 12/7 8.3 1.3
j1;1j1;1j1;1j 15/18 7.3 15/19 0 3.7 13/15 15 7.3
j2;1j2;1j1;1j 12/6 11 11/13 9 3.7 11/9 9 1.5
j3;1j2;2j1;3j 11/12 15 11/12 0 3.7 9/9 22 3.1
j1;1j1;1j1;1j1;1j 14/17 22 13/17 7.7 4.4 11/14 27 7.4

DCT–DIT–2: NV = 96, NCC = 2, LCP = 7
j1;1j1;1j 37/32 20 37/14 0 5.8 37/13 0 2.2
j2;1j2;1j 23/28 38 23/17 0 5.8 22/23 4.6 20
j1;1j1;1j1;1j 25/28 29 27/15 -7.4 7.3 25/13 0 16
j3;1j2;2j1;3j 17/18 43 17/20 0 8.2 14/20 21 22
j1;1j1;1j1;1j1;1j 22/30 174 20/21 10 9.0 19/18 16 21

FFT: NV = 38, NCC = 1, LCP = 4
j1;1j1;1j 14/6 5.8 14/4 0 1.9 14/4 0 0.10
j2;1j2;1j 10/6 7.7 10/4 0 1.9 10/4 0 0.14
j1;1j1;1j1;1j 12/8 6.1 10/12 20 2.4 10/9 20 1.5
j2;1j2;1j1;2j 10/4 9.8 8/10 25 2.6 8/5 25 0.6
j3;2j3;1j1;3j 7/4 13 7/6 0 2.6 6/5 17 1.8
j1;1j1;1j1;1j1;1j 11/10 25 10/12 10 3.0 9/6 22 5.4

EWF: NV = 34, NCC = 1, LCP = 14
j1;1j1;1j 18/5 5.7 17/3 5.9 3.9 17/3 5.9 0.04
j2;1j2;1j 15/2 4.1 16/3 -6.3 3.9 15/1 0 1.5
j2;1j1;1j 15/2 4.2 16/5 -6.3 3.9 15/3 0 0.59
j1;1j1;1j1;1j 18/5 18 17/7 5.9 4.8 16/5 12 1.4
j2;2j2;1j1;1j 15/2 7.2 15/5 0 4.9 14/5 7.1 3.3

ARF: NV = 28, NCC = 1, LCP = 8
j1;1j1;1j 13/5 1.6 11/4 18 2.0 11/4 18 0.22
j1;2j1;2j 10/5 2.0 10/5 0 2.0 10/4 0 0.28

Table 1: Benchmark results for NB = 2 and lat(move) = 1.

consistent improvements over PCC (up to 29%), at the expense of
an increase of computation time (up to 7 seconds in some data-
path configurations for DCT-DIT and FFT and to 22 seconds for
96-node DCT-DIT-2, measured on an RS6000). We have tuned the
iterative improvement binding algorithm for high optimization and
consider these times acceptable in the context of the embedded ap-
plications of interest, since the quality of the synthesized VLIW
datapaths and/or the quality of generated code are of major impor-
tance.

6. CONCLUSIONS
We proposed an efficient binding algorithm for clustered data-

paths and experimentally demonstrated that it favorably compares
with one of the best state-of-the art binding algorithms reported in
the literature. Beyond its obvious relevance to compilers, the flex-
ibility and efficiency of this algorithm make it a very good can-
didate for use within a design space exploration framework for
application-specific VLIW processors. This is part of our ongoing
work.
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